# **Short Range Correlations and the EMC Effect**

Or Hen
Tel-Aviv University

#### In collaboration with:

- L.B. Weinstein (ODU)
- D. Higinbotham, J. Gomez (JLab)
- E. Piasetzky, R. Shneor (TAU)

#### **EMC Effect**

#### DIS off a bound nucleon ≠ DIS off a free nucleon



#### SLAC E139



J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

#### **EMC Effect**

#### DIS off a bound nucleon ≠ DIS off a free nucleon

Hundreds of theoretical papers tried to explain the effect

- Nuclear Effects: binding effects, pion enhancement, 6-quark clusters, and many more...
- Modification of the nucleon structure:
   dynamical rescaling, point like configuration
   suppression, structure function modification in the
   mean field, and many more...

### JLab Measurements in Light Nuclei

 Precise DIS measurements in light nuclei



EMC does not scale as the average

nuclear density

→ Not a bulk property of the nuclear medium



EMC IS A LOCAL
DENSITY EFFECT



# High Momentum Components of the Nuclear Wave Function



- Single particle mean field models do not produce enough high momentum nucleons
- Many-body calculations of nucleon momentum distribution in nuclei predicts that the high momentum distribution for all nuclei has the same shape:

$$n_A(k) = a_2(A) \cdot n_d(k)$$

C. Ciofi degli et al. Phys. Rev. C 53 (1996) 1689

## Inclusive Electron Scattering at X<sub>B</sub>>1

 A hard process with the resolving power to probe the <u>partonic structure of the nucleus</u>

$$-0 < X_B < A$$

 X<sub>B</sub> counts the number of nucleons involved in the reaction

 $\rightarrow$  for  $X_B > j$ , at least j nucleons are involved in the reaction

E, E'3-5 GeV

Kinematical regime: Q<sup>2</sup> 2 - 3 [GeV/c]<sup>2</sup>

$$0 \le X_R \le A$$



## Inclusive Electron Scattering at X<sub>B</sub>>1

#### Deep Inelastic Scattering

→ Partonic (quark) Structure of <u>Hadrons</u>

#### Inclusive Scattering at X<sub>B</sub>>1

→ Partonic (nucleon) Structure of <u>Nuclei</u>

#### Inclusive A(e,e') Measurments

 Energy and momentum conservation for quasi-elastic scattering is given by: (q+P<sub>A</sub>-P<sub>A-1</sub>)<sup>2</sup>=m<sub>N</sub><sup>2</sup>

• For high  $Q^2$  and  $X_B > 1$  a solution is possible only if the initial momentum of the scattered nucleon is higher than a minimal

momentum  $P_{min}(X_B)$ 

X<sub>B</sub> effectively
 determines the initial momentum of the scattered nucleon



momentum scaling ↔ X<sub>B</sub> Scaling

### Inclusive A(e,e') Measurments

### JLab Hall-B



K. Sh. Egiyan et al. PRL. 96, 082501 (2006)

### Looking at the Full Picture



#### SRC Scaling Ratios vs. EMC Slopes



L. B. Weinstein et al. PRL. 106, 052301 (2011)

# Possible explanations for EMC-SRC correlation

- The EMC effect is related to high momentum nucleons in the nucleus
- Contradicts many models that explain the effect in terms of partonic structure function modification by the nuclear mean field
- Supports models that relate the magnitude of the EMC effect to the kinetic energy of the nucleons.
  - Reminder: 2N-SRC holds ~80% of the total kinetic energy of the nucleus

### Summery and outlook

- The EMC effect is a local density effect, not a bulk property of the nuclear medium.
- The EMC strength (slopes) scales linearly with SRC probabilities (scaling factors).
- Our speculation is that this correlation arises because both EMC and SRC are dominated by high momentum nucleons in the nuclei.
- Dedicated exclusive and inclusive experiments at JLab 12GeV can help understand the origin of the EMC-SRC correlation
- Implications on PDFs and free nucleon stucture functions
   ==> SEE NEXT TALK by Eli Piasetzky



#### **Extra Slides**

- SRC from inclusive and exclusive measurements
- SRC Q<sup>2</sup> Independence
- EMC Q<sup>2</sup> Independence
- EMC Slope vs. Average
- JLab EMC Results

# SRC from inclusive and exclusive measurements

# Preliminary Results From JLab Hall-C

| $a_2(A/d)$        |                 |
|-------------------|-----------------|
| <sup>3</sup> He   | $2.08\pm0.01$   |
| <sup>4</sup> He   | $3.47\pm0.02$   |
| <sup>9</sup> Be   | 4.03±0.04       |
| <sup>12</sup> C   | 4.95±0.05       |
| <sup>63</sup> Cu  | $5.48 \pm 0.05$ |
| <sup>197</sup> Au | 5.43±0.06       |



N. Fomin, Ph.D Thesis (2010)

 $n_{\Delta}(k) = a_{2}(A/d) \cdot n_{d}(k)$ 

# Short Range Correlations From Inclusive Measurements

Scaling onset corresponds to P<sub>min</sub> ≈ 275 MeV/c

$$\int_{0}^{\infty} n_{d}(k) k^{2} dk = 100\% = \sum_{P_{min}}^{\infty} n_{d}(k) k^{2} dk = 4\%$$

- In nuclei with A > 12, 2N-SRC account for:
  - ~20% of the nucleons in the nuclei
  - ~80% of the kinetic energy carried by the nucleons
- 3N-SRC are an order of magnitude less abundant then 2N-SRC

# Exclusive SRC measurements via the (e,e'pN) reaction

- Exclusive measurements at X<sub>B</sub>>1 confirmed that the high momentum tail of the nuclear wavefunction consists mainly of 2N-SRC
- These correlations are dominated by np pairs





## SRC Q<sup>2</sup> Independence

## a<sub>2</sub>(Fe/d) Q<sup>2</sup> independence



## EMC Q<sup>2</sup> Independence

### $^{12}$ C/d for 4 < $Q^2$ < 6 [GeV/c] $^2$



### Q<sup>2</sup> independence



J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

## EMC Slope vs. Average

## EMC slope vs. average of $X_B = 0.4-0.6$



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Based on data from J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

### **JLab EMC Results**

### EMC Effect in <sup>4</sup>He, <sup>9</sup>Be, and <sup>12</sup>C



J. Seely et al. PRL 103, 202301 (2009)

### EMC Effect in <sup>3</sup>He



J. Seely et al. PRL 103, 202301 (2009)